Prindi see leht

Bioenergy and Biofuels workgroup

 

   

Contact:
Prof. Timo Kikas
e-post: timo.kikas@emu.ee
Tel: (+372) 731 3163

Address:

Chair of Biosystems Engineering
Institute of Forestry and Engineering
Estonian University of Life Sciences
56 Fr. R. Kreutzwaldi
51006 Tartu, ESTONIA
At the moment there are two professors, two research fellows, a Marie Curie research fellow, a postdoctoral fellow, and eight doctoral students in our workgroup. Two main topics are headed by Professor Timo Kikas and Professor Erwan Rauwel. In last years, we have received two international grants, Marie Curie postdoctoral grant, a Mobilitas Pluss postdoctoral grant, and several national research grants. Our research group is also part of the Centre of Excellence EQUiTANT that studies emerging orders in quantum and nanomaterials.

The research of biofuels was started in the Institute of Technology in 2007 by Professor Jüri Olt. At first it focused mainly on the solid fuels, like briquettes and pellets. Briquetting characteristics and optimal conditions of different lignocellulosic materials and agricultural wastes were studied.

In 2008, research of liquid biofuels was added to the portfolio. First studies were on first generation feedstock and biofuels like bioethanol and vegetable oil. Later, research of second and third generation biofuels prevailed to avoid the ethical, economic and environmental problems associated with the first generation.

In 2011, a new workgroup was formed in the department Agricultural and production engineering, that started the research on bioethanol production from lignocellulosic biomass. The main focus was on the efficiency of the pretreatment process of the biomass and on the continuous process production.

In 2013, a novel Nitrogen Explosive Decompression (NED) pretreatment was developed. The NED allows efficient pretreatment of the lignocellulosic biomass without using any chemicals. This makes it environmentally and economically interesting. NED pretreatment makes use of the fact that nitrogen gas has different solubilities in water under different pressures.

During the same period laboratory of microalgal research was started. Microalgae have many characteristics that make them interesting research subjects and potential alternative biomass source. Firstly, microalgae have the most efficient photosynthesis apparatus on the planet. They can be used to sequestrate carbon dioxide both, from air and from flue gas. The biomass production rates for microalgae are many times higher than that of their land counterparts. Also, many of the microalgae have very high lipid contents. Which make them also potential raw material for lipid-based biofuels. There is also a novel photobioreactor design that has been patented in our laboratory.

In 2016, a research topic was started to deal with the waste utilisation of bioethanol production process. There is ca 20L of stillage produced per every litre of ethanol produced. This stillage has very high BOD and requires treatment prior to realising it into the environment. One interesting possibility is to use anaerobic digestion to remove the degradable organics from the solution while also contributing to additional energy output from the process.

In 2018, the workgroup was joined by Professor Erwan Rauwel and senior researcher Protima Rauwel, who brought into the group know-how in the field of nanotechnology. Their main research focuses on metal oxide (HfO2, ZrO2, ZnO) and metal nanoparticle (Co, Ag, Ag_Co…) synthesis for application in water purification (heavy metal ions and radioactive elements), biomedical applications (biocidal coating) and the development of new hybrid nanocomposites for photovoltaic applications.

In addition, workgroup got a Mobilitas Pluss grant for a postdoctoral position. Under the tutelage of Dr. Tharaka Doddapaneni a novel integrated process of biofuel production is being developed. In his research Dr Doddapaneni is studying the possibilities of integrating anaerobic digestion into the torrefaction-based biocoal production process. This will enable to give additional value to the production chain and lower the cost of the coal.

Recent publications:

Rocha-Meneses, Lisandra; Zannerni, Rawan; Inayat, Abrar; Abdallah, Mohamed; Shanableh, Abdallah; Ghenai, Chaouki; Kamil, Mohammed; Kikas, Timo (2022). Current progress in anaerobic digestion reactors and parameters optimization. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-021-02224-z.

Doddapaneni, Tharaka Rama Krishna C.; Ahmad; Fiaz; Valgepea, Kaspar; Kikas, Timo (2022). Integrated thermochemical and biochemical processes for the production of biofuels and biochemicals. In: Biomass, Biofuels, Biochemicals (67−105). Elsevier. DOI: 10.1016/B978-0-323-89855-3.00025-X.

Hasanov, Isa; Shanmugam, Sabarathinam; Kikas, Timo (2022). Extraction and isolation of lignin from ash tree (Fraxinus exselsior) with protic ionic liquids (PILs). Chemosphere, 290, 133297. DOI: 10.1016/j.chemosphere.2021.133297.

Krishna C. Doddapaneni, Tharaka Rama; Kikas, Timo (2021). Chapter 39 - Thermochemical and biochemical treatment strategies for resource recovery from agri-food industry wastes. In: Bhat, Rajeev (Ed.). Valorization of Agri-Food Wastes and By-Products. Recent Trends, Innovations and Sustainability Challenges (787−807). Academic Press. DOI: 10.1016/B978-0-12-824044-1.00007-6.

Cahyanti, Margareta Novian; Doddapaneni, Tharaka Rama Krishna C.; Madissoo, Marten; Pärn, Linnar; Virro, Indrek; Kikas, Timo (2021). Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics. Energies, 14 (10), 2774. DOI: 10.3390/en14102774.

Sjulander, Nikki; Kikas, Timo (2020). Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review. Energies, 13 (18), 4751.10.3390/en13184751.

Hasanov, Isa; Raud, Merlin; Kikas, Timo (2020). The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass. Energies, 13 (4864), 1−24.10.3390/en13184864.

Raud, Merlin; Kikas, Timo (2020). Perennial Grasses as a Substrate for Bioethanol Production. Environmental and Climate Technologies , 24 (2), 32−40.10.2478/rtuect-2020-0052.

Rocha-Meneses, Lisandra; Harris, Peter; Tait, Stephan; Antille, Diogenes L.; Kikas, Timo; McCabe, Bernadette K. (2020). Bioresource recovery in the Australian red meat processing industry: a technical review of strategies for increased circularity. 2020 ASABE Annual International Virtual Meeting, July 13-15, 2020. American Society of Agricultural and Biological Engineers (ASABE), 3−30.10.13031/aim.202000690.

Rocha-Meneses, Lisandra; A. Ferreira, Jorge; Mushtaq, Maryam; Karimi, Sajjad; Orupõld, Kaja; Kikas, Timo (2020). Genetic modification of cereal plants: A strategy to enhance bioethanol yields from agricultural waste. Industrial Crops and Products, 150 (C), 112408.10.1016/j.indcrop.2020.112408.

Cahyanti, Margareta Novian; Doddapaneni, Tharaka Rama Krishna C.; Kikas, Timo (2020). Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresource Technology, 122737.10.1016/j.biortech.2020.122737.

Rocha-Meneses, Lisandra; Otor, Oghenetejiri Frances; Bonturi, Nemailla; Orupõld, Kaja; Kikas, Timo (2020). Bioenergy Yields from Sequential Bioethanol and Biomethane Production: An Optimized Process Flow. Sustainability, 12 (1), 272.10.3390/su12010272.

Rauwel, Erwan; Al-Arag; Siham; Salehi, Hamideh; Amorim, Carlos O.; Cuisinier, Frédéric; Guha, Mihu; S. Rosario, Maria; Rauwel, Protima (2020). Assessing Cobalt Metal Nanoparticles uptake by Cancer Cells using Live Raman Spectroscopy. International Journal of Nanomedicine, 15, 7051−7062.10.2147/IJN.S258060.

Rauwel, Protima; Rauwel, Erwan (2019). Towards the extraction of radioactive Cesium-137 from water via graphene/CNT and nanostructured Prussian blue hybrid nanocomposites: A Review. Nanomaterials, 9 (6), 682.10.3390/nano9050682.

Rauwel, Protima; Ducroquet, Frédérique; Galeckas, Augustinas; Rauwel, Erwan (2019). Selective photocurrent generation in HfO2 and carbon nanotube hybrid nanocomposites under Ultra-Violet and visible photoexcitations. Materials Letters, 1.10.1016/j.matlet.2019.03.030.

Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N. J. (2019). Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111, 44−56. 10.1016/j.rser.2019.05.020.

Raud, M.; Krennhuber, K.; Jäger, A.; Kikas, T. (2019). Nitrogen explosive decompression pre-treatment: an alternative to steam explosion. Energy, 177, 175−182. 10.1016/j.energy.2019.04.071.

Rocha-Meneses, Lisandra; Raud, Merlin; Orupõld, Kaja; Kikas, Timo (2019). Potential of bioethanol production-waste for methane recovery. Energy, 173, 133−139. 10.1016/j.energy.2019.02.073.

Rocha-Meneses, Lisandra; Ferreira, Jorge A; Bonturi, Nemailla; Orupõld, Kaja; Kikas, Timo (2019). Enhancing Bioenergy Yields from Sequential Bioethanol and Biomethane Production by Means of Solid–Liquid Separation of the Substrates. Energies, 12 (19), 3683. 10.3390/en12193683.

Rocha-Meneses, Lisandra; Bergamo, Thaísa Fernandes; Kikas, Timo (2019). Potential of cereal-based agricultural residues available for bioenergy production. Data in Brief, 23, 103829. 10.1016/j.dib.2019.103829.

Rocha-Meneses, Lisandra; Silva, Jose Carlos; Cota, Sandra; Kikas, Timo (2019). Thermodynamic, Environmental and Economic Simulation of an Organic Rankine Cycle (ORC) for Waste Heat Recovery: Terceira Island Case Study. Environmental and Climate Technologies, 23 (2), 347−365. 10.2478/rtuect-2019-0073.

Rocha-Meneses, Lisandra; Ivanova, Anastasia; Atouguia, Guilherme; Ávila, Isaac; Raud, Merlin; Orupõld, Kaja; Kikas, Timo (2019). The effect of flue gas explosive decompression pretreatment on methane recovery from bioethanol production waste. Industrial Crops And Products, 127, 66−72.10.1016/j.indcrop.2018.10.057.

Raud, Merlin; Rooni, Vahur; Kikas, Timo (2018). The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment. Energies, 11(2074). 10.3390/en11082074.

Pitman, Kätlin; Raud, Merlin; Scotti, Gianmario; Jokinen, Ville P.; Franssila, Sami; Nerut, Jaak; Lust, Enn; Kikas, Timo (2017). Electrochemical Characterization of the Microfabricated Electrochemical Sensor-Array system. Electroanalysis, 29, 249−258.10.1002/elan.201600559.

Podkuiko, L.; Olt, J.; Kikas, T. (2017). Growth of Scenedesmus obliquus under artificial flue gas with a high sulphur concentration neutralized with oil shale ash. Proceedings of the Estonian Academy of Sciences, 66(2), 151−158.10.3176/proc.2017.2.03.

Rocha-Meneses, Lisandra; Raud, Merlin; Orupõld, Kaja; Kikas, Timo (2017). Second-generation bioethanol production: A review of strategies for waste valorisation. Agronomy Research, 15(3), 830−847.

Rooni, Vahur; Raud, Merlin; Kikas, Timo (2017). Technical solutions used in different pretreatments of lignocellulosic biomass: a review. Agronomy Research, 15(3), 848−858.

Rooni, Vahur; Raud, Merlin; Kikas, Timo (2017). The Freezing Pre-Treatment of Lignocellulosic Material: A Cheap Alternative for Nordic Countries. Energy, 139, 1−7.10.1016/j.energy.2017.07.146.

Raud, Merlin; Mitt, Marion; Oja, Tõnu; Olt, Jüri; Orupõld, Kaja; Kikas, Timo (2017). Utilization potential of urban greening waste: Tartu case-study. Urban Forestry and Urban Greening, 21, 96−101.10.1016/j.ufug.2016.11.014.

Pitman, K.; Nerut, J.; Lust, E.; Franssila, S.; Raud, M.; Kikas, T. (2017). Electrooxidation of Hexacyanoferrate(II) Anions and Electroreduction of Oxygen in the Microfabricated Electrochemical Sensor-Array System. ECS Transactions, 77(11), 1771−1782.10.1149/07711.1771ecst .


Intellectual property:

1. Double walled cylindrical rotating photobioreactor with inner light source

Double walled cylindrical rotating biophotoreactor with inner light source, that includes closed vessel, which is formed by two horizontal double walled cylinders on the common rotational axes with a potential to rotate, outer and inner walls, endplates, and the fixed section that joins both rotating cylinders and is filled with microalgal solution. In the middle of the double walled cylinders inner light source is placed. The excess heat produced by the light source is dissipated using ventilator. Turning the light source on and off the switching mechanism is used. To the upper part of the fixed section the outtake of residual gases and input of nutrient solution with filters and valves are fixed. To the lower part of the fixed section the outtake of excess biomass and input of carbon dioxide (CO2) and/or air with filters and valves are fixed. The open ends of rotating cylinders are furnished with seals that make contact with the sliding surfaces of the fixed section. The closed ends are furnished with rolling-braces that prevent axial displacement.


Authors: Timo Kikas, Lara Podkuiko, Jüri Olt; Priority number: P201400048;

2. Nitrogen explosion pretreatment method for disruption of biomass structure

The invention belongs to the field of instrumentation for production of non-fossil biofuels, more specifically instrumentation for production of bioethanol, biobutanol and biodiesel and is applicable in biofuel production process from lignocellulosic biomass. In nitrogen explosion method for disrupting cell structure, dry milled biomass is mixed with water to achieve creamy consistency (biomass to water ration from 1:5 to 1:15), pressure is increased using nitrogen gas (N2) to a range of 10 to 60 bars, temperature in the pressure vessel is raised to a range of 125 to 190 degrees of Celsius and is kept thus for the incubation period of 10 to 120 minutes. The mixture is then cooled to a temperature range of 25 to 90 degrees of Celsius, while the total time of biomass heating, incubation and cooling is in the range of 1 to 4 hours. After reaching the final temperature, the pressure is suddenly released to achieve explosive decompression and the pretreated biomass is used in further processing.

Authors: Timo Kikas, Merlin Raud, Marti Tutt, Jüri Olt; Priority number: P201400050;


3. Integrated flow-through apparatus for ethanol production from lignocellulosic biomass

The invention falls in the category of non-fossil fuel production technology, bioethanol production in particular, and is applicable in the production of bioethanol from lignocellulosic biomass. Integrated flow-through apparatus for ethanol production from lignocellulosic biomass contains of interconnected pre-treatment, hydrolysis, fermentation, and distillation units. The pre-treatment, hydrolysis, and distillation units are incorporated into a single integrated reactor, where pre-treatment and hydrolysis units are made of two-levelled coil of tubing that is wound around the distillation unit. The tube size in both levels is different and the reactor has a heat exchange system. The pre-treatment unit is placed in the inner part of the two-levelled tubing and the hydrolysis unit in the outer part. The tube size decreases from inner part to outer. Different parts of the tubing are immersed in the heat carrier and separated from each other by insulating walls. The fermentation unit of the apparatus is an upright container that includes an upright winding channel. The inlet of the channel is at the bottom and outlet at the top of the container. Apparatus is furnished with sensors and a control panel to control the processes in the apparatus.


Authors: Jüri Olt, Timo Kikas; Priority number: P201300016.


Active projects:

PM180260TIBT "From biowaste to high value products - TIBT (1.01.2019−31.12.2022)", Timo Kikas, Estonian University of Life Sciences, Institute of Technology, Chair of Biosystems Engineering.

L190027TIBT  "International Energy Agency Bioenergy Task 37 – Energy from Biogas and Landfill gas“ (22.03.2019−21.03.2022), Timo Kikas, Estonian University of Life Sciences, Institute of Technology, Chair of Biosystems Engineering.

F180175TIBT "Centre of Excellence "Emerging orders in quantum and nanomaterials" (1.09.2018 – 31.12.2022), Erwan Rauwel, Estonian University of Life Sciences, Institute of Technology.

F170096TIPT "Development of an Integrated Process for Conversion of Biomass to Affordable Liquid Biofuel" (1.04.2017−31.10.2020), Timo Kikas, Estonian University of Life Sciences, Institute of Technology.

F170042TIPT "Holistic processes and practices for clean energy in strengthening bioeconomy strategies in Europe and India" (1.04.2017−31.09.2020), Merlin Raud, Estonian University of Life Sciences, Institute of Technology.

PM180107TIBT "Innovaatilise idee konkursi võidutöö "Pidevprotsessiline kemikaalivaba eeltöötlusseade töötlemaks lignotselluloosset biomassi – eeltöötlus plahvatusliku rõhulangetuse meetodi abil" (1.04.2018−31.03.2021)", Timo Kikas, Estonian University of Life Sciences, Institute of Technology.


V200070TIBT (843723) "Integrating torrefaction of pulp and paper industry sludge with microbial conversion: A new approach to produce bioenergy carriers and biochemicals in a view of bio and circular economy. (1.09.2020−31.08.2022)", Tharaka Rama Krishna Chowdary Doddapaneni, Eesti Maaülikool, Tehnikainstituut.


MOBJD703 "Mikrovetikate koostöötlemine tahkete kommunaaljäätmetega null-jäätmelises mikrovetika biorafineerimisprotsessis (1.10.2020−30.09.2022)", Fiaz Ahmad, Eesti Maaülikool, Tehnikainstituut, Biomajandustehnoloogiate õppetool.

COVSG9 "Polümeersete nanokomposiitide kasutamine anti-viraalsetes lisandites ja pinnakatetes (1.12.2020−31.12.2021)", Erwan Yann Rauwel, Eesti Maaülikool.

RESTA5 "Termokeemiliste väärindamis-ja biorafineerimistehnoloogiate arendamine ja optimeerimine teise ja kolmanda põlvkonna biokemikaalide tootmiseks lignotselluloossest materjalist (1.01.2021−31.08.2023)", Timo Kikas, Eesti Maaülikool.

RESTA22 "Ligniini keemilise ja ensümaatilise väärindamise tehnoloogiad: ligniinist ja sellest eraldatud fenoolsetest fragmentidest arendatavad tooted – materjalide sünteesiks kasutatavad algühendid, vaigud, liimid, õlid, plastikud, ehitusmaterjalid (1.07.2020−30.06.2023)", Siim Salmar, Tartu Ülikool, Loodus- ja täppisteaduste valdkond, tehnoloogiainstituut.

RESTA6 "Puidusuhkrute tööstusliku fermentatsiooni protsesside optimeerimine bioreaktorites, sünteetilise bioloogia meetodid kemikaalide ja valkude tootmiseks disainitud tööstuslike rakuvabrikute arendamiseks (1.07.2020−30.04.2023)", Mart Loog, Tartu Ülikool, Loodus- ja täppisteaduste valdkond, tehnoloogiainstituut.

RESTA11 "Pleegitatud keemilis-termilise puitmassi (BCTMP) ja töötlemata sekundaarsete puitmassi voogude keemilise ja biokeemilise väärindamise tehnoloogiate väljaarendamine (1.09.2020−31.05.2023)", Tiit Lukk, Tallinna Tehnikaülikool, Loodusteaduskond, Keemia ja biotehnoloogia instituut.

RESTA7 "Lignotselluloosse biomassi keemiline konverteerimine monomeerideks ja polümeriseerimine kõrgtehnoloogilisteks polümeerideks (1.11.2020−31.08.2023)", Lauri Vares, Tartu Ülikool, Loodus- ja täppisteaduste valdkond, tehnoloogiainstituut.

RESTA9 "Puidutööstuse jääkide gasifitseerimise ja gaasfermentatsioonil kemikaalide tootmine: suurema saagise ja parema stressitaluvusega biotehnoloogiliste tootmistüvede välja töötamine sünteesgaasi põhiselt (1.01.2022−31.08.2022)", Kaspar Valgepea, Tartu Ülikool, Loodus- ja täppisteaduste valdkond, tehnoloogiainstituut.

V210006TIBT (Grandileping nr 4-8/21/18) "Microalgae based, safety-tested and optimized fish feed value chain by using Interdisciplinary R&D and IT solutions" (1.07.2021−30.06.2024); Vastutav täitja: Timo Kikas; Eesti Maaülikool, Tehnikainstituut, Biomajandustehnoloogiate õppetool; Finantseerija: Eesti Teadusinfosüsteemi (ETIS) osakond; Eraldatud summa: 64 000 EUR.

V210069TIBT (LV-RESEARCH-0011) "Novel biorefinery concepts for valorization of lignocellulosic residues" (1.05.2021−30.04.2024); Vastutav täitja: Timo Kikas; Eesti Maaülikool, Tehnikainstituut, Biomajandustehnoloogiate õppetool (partner); Finantseerija: The EEA and Norway Grants; Eraldatud summa: 215 000 EUR.

P200195TIBT (EMÜ senati otsus 17.12.2020 nr 1-27/40) "Baasfinantseerimise toetus projekti "Torrefaktsiooni integreerimine mikroobsete protsessidega biokemikaalide ja bioenergia kandjate tootmiseks põllumajandusjääkidest" taotlusega seotud teadus- ja arendustegevuse toetamiseks" (1.01.2021−21.12.2022); Vastutav täitja: Timo Kikas; Eesti Maaülikool, Tehnikainstituut, Biomajandustehnoloogiate õppetool; Finantseerija: Eesti Maaülikool; Eraldatud summa: 100 000 EUR.